Catalytic oxidation of CS2 over atmospheric particles and oxide catalysts
نویسنده
چکیده
The catalytic oxidization of CS2 over atmospheric particles and some oxide catalysts was explored through FT-IR, MS and a fixed-bed stainless steel reactor. The results show that atmospheric particles and some oxide catalysts exhibited considerable oxidizing activities for CS2 at ambient temperature. The reaction products are mainly COS and elemental sulfur, even CO2 on some catalysts. Among the catalysts, CaO has the strongest catalytic activity for oxidizing CS2. Fe2O3 is weaker than CaO. The catalytic activity for Al2O3 reduces considerably compared with the former two catalysts, and SiO2 the weakest. Atmospheric particle samples’ catalytic activity is between Fe2O3’s and Al2O3’s. The atmospheric particle sample collected mainly consists of Ca(Al2Si2O8) 4H2O, which is also the main component of cement. COS, the main product, is formed by the catalytic oxidization of CS2 with adsorbed “molecular” oxygen over the catalysts’ surfaces. The concentration of adsorbed oxygen over catalysts’ surfaces may be the key factor contributed to the oxidizing activity. It is indicated that CS2 could be catalytically oxidized over atmospheric particles, which induced that this reaction may be another important source of atmospheric COS from CS2.
منابع مشابه
Catalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT
Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...
متن کاملCatalytic Performance and Kinetic Study in the Total Oxidation of VOC over Micro/Meso Porous Catalysts
The total oxidation of toluene at a wide temperature range (200–500 oC) over micro/mesoporous platinated catalysts has been investigated about activity, selectivity to CO2 and CO, catalyst's stability versus coke deposition and reaction kinetics. Kinetic of toluene oxidation was measured under various oxygen and toluene pressures and als...
متن کاملCatalytic and Non-catalytic Conversion of Methane to C2 Hydrocarbons in a Low Temperature Plasma
The direct conversion of methane to C2 hydrocarbons, in a quartz tube reactor enforced by a DC corona discharge, was investigated at atmospheric pressure. The process was carried out in the presence of metal oxide catalysts of Mn/W/SiO2, Mn/W/SiO2 (tetraethyl orthosilicate, TEOS), and Mn/W/CNT (supported on carbon nanotubes). The total yield to C2 hydrocarbons in the presence of metal oxide cat...
متن کاملExperimental and Kinetic Study of CO Oxidation Over LaFe1-xCuxO3 (x=0, 0.2, 0.4, 0.6) Perovskite-Type Oxides
In this paper, catalytic oxidation of CO over the LaFe1-xCuxO3 (x= 0, 0.2, 0.4, 0.6) perovskite-type oxides was investigated. The catalysts were synthesized by sol-gel method and characterized by XRD, BET, FT-IR, H2-TPR and SEM methods. The catalytic activity of catalysts was tested in catalytic oxidation of CO. XRD patterns confirmed the synthesized perovskites to be single-phase perovskite-ty...
متن کاملCatalytic oxidation of toluene over LaBO3 (B= Fe, Mn and Co) and LaCo0.7B′0.3O3 (B′= Fe and Mn) perovskite-type
In this paper, LaBO3 perovskite type catalyst formulations were prepared by sol-gel auto combustion method using citric acid as the fuel. Activity of catalysts was tested in catalytic oxidation of toluene as a model of volatile organic compounds. LaCoO3 perovskite formulation showed the highest activity among LaBO3 (Fe, Mn and Co) perovskite catalysts. So, LaCoO3 perovskite based catalyst was s...
متن کامل